MS in Financial Engineering @ WorldQuant University

Course Material - List of  Books, Articles and Videos

Cheat Sheet - All Formulas

Course 1: Financial Markets

M1 - Credit Risk and Financing 

a. L1 - Saving and Borrowing

b. L2 - Counterparties and Credit Risk

c. L3 - Buying and Selling Short

d. L4 - Surveying the Financial Industry 

M2 - Return and Volatility 

a. L1 - Introducing Stocks and Cryptocurrencies 

b. L2 - Types of Stocks and Cryptocurrencies 

c. L3 - Measuring Performance of Stocks and Cryptocurrencies

d. L4 - Modelling Performance of Stocks and Cryptocurrencies  

M3 - Correlation 

a. L1 - Portfolio Returns and Standard Deviations 

b. L2 - Correlation 

c. L3 - Exchange Traded Funds

d. L4 - Volatility and Correlations

M4 - Leverage and Non-Linearity 

a. L1 - Derivatives with an Emphasis on Options 

b. L2 - Leverage and Non-Linearity

c. L3 - Home Equity as an Option

d. L4 - Option Strategies and Scenarios 

M5 - Liquidity and Regulation

a. L1 - Securitization 

b. L2 - Valuation Challenges: Market Frictions and Model Risk

c. L3 - Liquidity and the Credit Market

d. L4 - Leverage and Crisis 

M6 - Model Failure and Crisis

a. L1 - The Balance Sheet: Leverage and Default

b. L2 - Debt and Equity: Financing Housing Development

c. L3 - The Housing Finance Problem and its Solution

d. L4 - More Than One Way to Pick a Stock

Course 2. Financial Data

Course 3. Financial Econometrics

M1: Getting Ready and Transformed for Financial Econometrics 

M2: From Econometrics to ML  

M3: Bivariate Dependence in Normal and Non-Normal Distributions 

M4: Time Series Modelling I - ARMA

M5: Time Series Modelling II - GARCH 

M6: Time Series Modelling III - Cointegration

M7: Top-down vs. bottom-up Agent-Based Simulations

Course 4. Derivative Pricing

M1: Pricing & Hedging Path Vanilla Options with The Binomial Tree

a. L1 - Financial Derivatives Basics

b. L2 - Option Pricing and Put Call Parity 

c. L3 - Introducing Delta 

d. L4 - Matching Volatility and Risk Measures 

M2: Pricing & Hedging Path Dependent Options with The Binomial Tree

a. L1 - Intro to American Options

b. L2 - Dynamic Delta Hedging

c. L3 - Intro to Path Dependent Options

d. L4 - Intro to Monte Carlo Methods  

M3: Market Completeness and The Trinomial Tree

M4: Black Scholes and Vasicek Models

M5: Black Scholes Limitations and Stylized Facts 

M6: Pricing Options with Local Volatility and Stochastic Models

a. L1 - Implied Volatility and Volatility Smile

b. L2 - Local Volatility Models: Dupire 

c. L3 - Local Volatility Models: CEV 

d. L4 - Local Volatility Models CEV in Practice 

       M7: Pricing Options with Jump Diffusion Models

a. L1 - Stochastic Volatility: Heston

b. L2 - Option Pricing Under Heston (Monte Carlo)

c. L3 - Jump Diffusion Models

d. L4 - Merton Model  

Course 5. Stochastic Modelling

M1 - Option Pricing Using Fourier Methods 

a. L1 - Fourier Based Option Pricing

b. L2 - Characteristic Functions 

c. L3 - Discrete Fourier Transform

d. L4 - Fourier Methods for Heston Model 

M2 - Calibrating Merton and Heston Models 

a. L1 - Merton Model Calibration

b. L2 - Combining Merton '93 and Heston '76 

c. L3 - Bates (1996) in Practice

d. L4 - Calibrating the Bates   

M3 - Calibrating CIR and BCC Models

a. L1 - Interest Rate Models

b. L2 - Calibrating CIR (1995) 

c. L3 - BCC (1997) Model

d. L4 - BCC (1997) Model Calibration

M4 - Reinforcement Learning: Hidden Markov Models for Regime Changes  

a. L1 - Reinforcement Learning - Intro to Markov Process

b. L2 - Markov Process - Further Applications 

c. L3 - Hidden Markov Process

d. L4 - Regimes Changes and the EM Algorithm - An application to VIX 

M5 - Reinforcement Learning: Dynamic Programming Applied to Optimal Selling

a. L1 - Reinforcement Learning - Introduction to Dynamic Programming 

b. L2 - Dynamic Programming: The Q-Function 

c. L3 - Dynamic Programming: Policy Iteration 

d. L4 - Dynamic Programming: The Windy Gridworld, Async DP 

M6 - Reinforcement Learning: Multi-Armed Bandits for Stock Selection

a. L1 - Reinforcement Learning - Multi-Armed Bandits 

b. L2 - Multi-Armed Bandits: Stationary Case 

c. L3 - Multi-Armed Bandits: Non-Stationary Case 

d. L4 - Multi-Armed Bandits: Improvements and Stock Picking Applications

M7 - Temporal Difference Methods Applied to Optimal Trading

a. L1 - Monte Carlo Methods 

b. L2 - Temporal Difference Methods 

c. L3 - Cliff Walk SARSA and Q-Learning 

d. L4 - Optimal Trading Behavior 

                Project 1,  Project 2, Project 3 

 Course 6. Machine Learning in Finance

M1: Introduction to Machine Learning: Supervised Learning

a. L1 - Intro to ML 

b. L2 - Supervised Models: Regression and Hyperparameters 

c. L3 - Supervised Models: Classification

d. L4 - Supervised Models: Classification Case Study              

e. Project Work       

M2: Introduction to Machine Learning: Unsupervised Learning

a. L1 - Unsupervised Machine Learning - Clustering 

b. L2 - Hierarchical Clustering 

c. L3 - Dimensionality Reduction - PCA

d. L4 - Principal Component Analysis and Interest Rate Modelling  

M3: Classification Problems with Bayes Methods and Classification Trees

a. L1 - Bayesian Statistics in Classification 

b. L2 - Bayesian Statistics in Practice 

c. L3 - Trees

d. L4 - Trees in Practice

 M4: Improving Trees Using Ensemble Learning

a. L1 - Ensemble Learning

b. L2 - Ensemble Learning in Practice

c. L3 - Boosting Methods

d. L4 - Ensemble Learning Comparisons

M5: Support Vector Machines and Neural Networks

a. L1 - Support Vector Machines

b. L2 - Support Vector Machines in Practice

c. L3 - Neural Networks

d. L4 - Neural Networks in Finance   

M6: Going Deeper with Neural Networks

a. L1 - Introduction to Deep Learning

b. L2 - Application of Deep Learning in Predicting Yield Curves

c. L3 - Optimization

d. L4 - Credit Risk Modeling - Application of Deep Learning    

       M7: Hyperparameter Tuning and Model Optimization

a. L1 - Introduction to Hyperparameter Tuning

b. L2 - House Prediction and Hyperparameter Tuning

c. L3 - Model Evaluation and Regularization

d. L4 - Bitcoin Trading Strategy   

  M8: Introduction to Neural Networks 

a. L1 - Introduction to Neural Networks - Quiz

b. L2 - Linear Models in TensorFlow - Timing Factors and Smart Beta Strategies

c. L3 - Multilayer Perceptrons

d. L4 - Multilayer Perceptrons - Timing Factors and Smart- Beta Strategies 

Course 7. Deep Learning in Finance

M1: Financial Time-Series Predictability for Stock Timing with MLP 

a. L1 - MLPs

b. L2 - MLP for Classification: Timing AAPL Stock

c. L3 - Encoding Time Series as Images

d. L4 - Deep CNNs: Implementing a Garmian Angular Field 

M2: Convolutional Neural Networks for Pattern Recognition in Financial Markets 

a. L1 - CNN: Introduction

b. L2 - CNNs: Candlesticks and Convolutions 

c. L3 - Towards Modern CNNs

d. L4 - CNNs: Training a CNN 

M3: Deep Convolutional Neural Networks for Financial Time Series 

a. L1 - Deep CNN: Architectures 

b. L2 - Transfer Learning for CNNs

c. L3 - Encoding Time Series as Images

d. L4 - Deep CNNs: Implementing a Garmian Angular Field

M4: Predicting Stock Prices Using Recurrent Neural Networks

a. L1 - Recurrent Neural Networks (RNNs)               

b. L2 - RNN Implementation

c. L3 - Backpropagation in RNNs

d. L4 - Multivariate RNNs 

M5: Stock Timing Strategies with Memory Under Modern Recurrent Neural Networks

a. L1 - GRUs and LSTMs               

b. L2 - LSTMs for Predicting BTC Prices

c. L3 - Deep and Bidirectional LSTMs

d. L4 - Bidirectional LSTMs and BTC Prices

M6: The Cross-Section of Stock Returns and Optimal Portfolio Choices Using Autoencoders

      a. L1 - Introduction to Auto Encoders               

      b. L2 - Application of Auto Encoders

      c. L3 - Further Auto Encoder Topics

      d. L4 - Portfolio Choice with Sparse Auto Encoders                 

       M7: Advanced Topics In Deep Learning For Finance 

      a. L1 - Ensembles and Walk Forward               

      b. L2 - Application of Walk Forward

      cL3 - Combinational Purged Cross-Validation               

      d. L4 - Custom Losses and Backtest Metrics 

Project 1,  Project 2, Project 3 

Course 8. Portfolio Management 

M1: Value at Risk and Classical Portfolio Theory

a. L1  - Sample Moments and Port Performance - I & II

b. L2 - Value at Risk        

c. L3 - From Utility Theory to Classical Port Theory

d. L4 - Math of Classical Port Theory    

M2: Elements of Advanced Port Theory

a. L1  - Resampling Efficient Frontiers 

b. L2 - Beyond Mean-Variance Optimization        

c. L3 - Optimal Portfolio and Currency Management 

d. L4 - Factor Models in Portfolio Theory    

M3: The Blackman-Litterman Model   

a. L1  - The Black-Litterman Model 

b. L2 - Critical Line Algorithms & Corner Portfolios        

c. L3 - Some Abuses of BL Model               

d. L4 - PSO and Probabilistic Approaches     

M4: Behav Finance & Application to Port Theory  

a. L1  - Behavioral Finance

b. L2 - Prospect Theory        

c. L3 - Behavioral Portfolio Theory              

d. L4 - Behavioral Types,, Bubbles and Crashes   

M5: Kelly and Risk Parity - Optimizing for Growth and Risk

a. L1 - The Kelly Criterion and The Optimal Growth Strategy

b. L2 - The Kelly Criterion Evolves

c. L3 - Introducing Risk Parity

d. L4 - Machine Learning Extensions of Risk Parity

M6: Advances and Challenges in Factor Investing

a. L1 - Factor Investing - Profitable Anomalies or Anomalous Profits 

b. L2 - Smart Beta, Herding and Not so Smart Beta

c. L3 - Factor Models with Machine Learning

d. L4 - Advanced Factor Construction

M7: Information Theory and Graphs for Improved Portfolios 

a. L1 - Shrinking the Covariance Matrix 

b. L2 - The Correlation Matrix Reloaded

c. L3 - Information and Distance

d. L4 - Hierarchical Risk Parity  

M8: Better Backtesting and Reinforcement Learning  

a. L1 - Backtesting without Overfitting: Deflating Sharpe and Overcoming Selection Bias 

b. L2 - Combinatorial Purged Cross-Validation 

c. L3 - Reinforcement Learning for Portfolio Management

d. L4 - Reinforcement Learning in Real Life 

Course 9. Risk Management 

M1: Systemic Risk 

a.  L1- Systemic Risk: Macroeconomic Indicators

b. L2 - Systemic Risk:  Networks and Principal Components      

c. L3 - Systemic Risk: Conditional and Illiquidity Risk      

d. L4 - Systemic Risk meets Machine Learning 

M2: Modelling and Heding Variance  

a. L1- Trading Volatility - Variance Swaps

b. L2 - Variance Swaps - Spanning with Options       

c. L3 - Jumping for Better Volatility Estimation               

d. L4 - Order Statistics Volatility Estimation in Action 

M3: Estimating Tail Loss with Deep Learning 

a. L1- DeepVar - Value at Risk meets Long Short Term Memory

b. L2 - DeepVar - The Python Implementation      

c. L3 - Forecasting Volatility with Transformers               

d. L4 - MultiLayer Transformers in Action 

M4: Predicting Stock Prices Using Recurrent Neural Networks

a. L1- Risk Modelling with Extreme Value Theory 

b. L2 - Block Maxima - Indonesian Gold        

c. L3 - The Theorem and Politics of Extreme Values 

d. L4 - Extreme innovations in VaR Modelling

M5: Bayesian Network for Risk Management

M6: Network Learning for Risk Management

M7: Climate Risk and Vasicek Model

M8: Dynamic Bayesian Network and Cohesive Risk Management

            Project 3 

Course 10. Capstone  

       M0: Capstone Lecture Notes

b. L2 - Trading for a Living 

c. L2 - Performance Chasers and Knife Catchers        

d. L3 - The Theorem and Politics of Extreme Values 

e. L4 - Extreme innovations in VaR Modelling

f. L5 - Seed Investors & Correlation Nuts

        g. L6 - Market Myths - Owning Stocks & Ways to Trade 

h. L7 - Turkeys and Nobel Laureates 

i. L8 - Option Selling Strategies - Risk Protection        

j. L9 - Market Myths - Holding positions over the weekend 

l. L10 - Taking Smart Beta to the Junk Yard

m. L11 - Hidden Drawdown     

o. L12 - Defense is the Best Offense        

p. L13 - Data Mining Bias 

q. L14 - Out of Sample Performance Deterioration


       M1: Past Guest Lectures

        M2: Capstone Project        

        a.  Paper