Elementary Number Theory - The Theory of Congruences


1. Theorem 1: Let  n be fixed positive integer. Two integers a and b are said to be congruent modulo n, symbolized by   

if n divides the difference a -b; that is provided that  a-b = kn for some integer k. Example




2. Theorem 2: Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the following properties hold

(a) a  a (mod n)
(b) If a   b (mod n), then b   a (mod n)
(c) If a   b (mod n) and b   c (mod n), then a    c (mod n)
(d) If a   b (mod n) and c   d (mod n), then a +c    b + d (mod n) and ac  bd (mod n)
(e) If a   b (mod n), then a + c    b + d (mod n) and ac  bd (mod n)
(f) If a   b (mod n), then   for any positive integer k