if n divides the difference a -b; that is provided that a-b = kn for some integer k. Example
2. Theorem 2: Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the following properties hold
(a) a a (mod n)
(b) If a b (mod n), then b a (mod n)
(c) If a b (mod n) and b c (mod n), then a c (mod n)
(d) If a b (mod n) and c d (mod n), then a +c b + d (mod n) and ac bd (mod n)
(e) If a b (mod n), then a + c b + d (mod n) and ac bd (mod n)
(f) If a b (mod n), then for any positive integer k